
ARTICLE

CSI 2.0: a significantly improved version of the Chemical Shift
Index

Noor E. Hafsa • David S. Wishart

Received: 27 June 2014 / Accepted: 17 September 2014 / Published online: 2 October 2014

� Springer Science+Business Media Dordrecht 2014

Abstract Protein chemical shifts have long been used by

NMR spectroscopists to assist with secondary structure

assignment and to provide useful distance and torsion angle

constraint data for structure determination. One of the most

widely used methods for secondary structure identification

is called the Chemical Shift Index (CSI). The CSI method

uses a simple digital chemical shift filter to locate sec-

ondary structures along the protein chain using backbone
13C and 1H chemical shifts. While the CSI method is

simple to use and easy to implement, it is only about

75–80 % accurate. Here we describe a significantly

improved version of the CSI (2.0) that uses machine-

learning techniques to combine all six backbone chemical

shifts (13Ca, 13Cb, 13C, 15N, 1HN, 1Ha) with sequence-

derived features to perform far more accurate secondary

structure identification. Our tests indicate that CSI 2.0

achieved an average identification accuracy (Q3) of

90.56 % for a training set of 181 proteins in a repeated

tenfold cross-validation and 89.35 % for a test set of 59

proteins. This represents a significant improvement over

other state-of-the-art chemical shift-based methods. In

particular, the level of performance of CSI 2.0 is equal to

that of standard methods, such as DSSP and STRIDE, used

to identify secondary structures via 3D coordinate data.

This suggests that CSI 2.0 could be used both in providing

accurate NMR constraint data in the early stages of protein

structure determination as well as in defining secondary

structure locations in the final protein model(s). A CSI 2.0

web server (http://csi.wishartlab.com) is available for

submitting the input queries for secondary structure

identification.

Keywords Nuclear magnetic resonance � Chemical

shifts � Secondary structure multi-class support-vector

machine � Markov model

Introduction

Secondary structures are considered fundamental to both

the description and the understanding of protein tertiary

structures. Indeed, secondary structure maps and second-

ary structure ribbon diagrams are standardly used in

almost all structural biology books, journals and databases

(Wuthrich 1986; Berman et al. 2000). It is also notable

that secondary structure assignments or predictions are

still widely used as the basis to many protein fold rec-

ognition algorithms (Soding et al. 2005), protein threading

methods (Jones et al. 1999), 3-D protein structure pre-

diction algorithms (Wishart 2011; Soding and Remmert

2011) and intrinsically disordered protein (IDP) identifi-

cation methods (He et al. 2009). Secondary structure is

also key to many heuristic energy functions that are

designed to assess, fold and/or refine protein structures

(Wishart et al. 2008; Berjanskii et al. 2009; Adams et al.

2013). Furthermore, secondary structure provides not only

approximate torsion angle and qualitative backbone flex-

ibility data, it also provides hydrogen bonding information

(for a-helices and b-strands), implied contact information

(for b-strands) and important topological information

(through b-turns). While increasing interest is turning to

extracting or predicting more quantitative measures of
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protein structure (i.e. torsion angles, backbone order

parameters, accessible surface area) it is important to note

that the accuracy of these methods is not yet sufficient to

permit their widespread use in 3D protein structure pre-

diction or 3D structure calculation algorithms (Wishart

2011). Consequently the identification and delineation of

secondary structure elements continues to be of interest to

protein chemists, bioinformaticians, X-ray crystallogra-

phers and, of course, NMR spectroscopists (Wuthrich

1986, 1990; Wishart 2011).

In the field of protein NMR, NOE-based methods are

widely used to identify and assign secondary structures.

Indeed, they continue to be the predominant method for

identifying or delineating secondary structures in peptides

and proteins (Wuthrich 1986). Less well known is the fact

that NMR chemical shifts can also be used to identify

secondary structures and that they are remarkably accurate

and far easier to use than NOEs (Wishart et al. 1992;

Wishart and Sykes 1994a, b). The idea of using chemical

shifts to identify secondary structures was first exploited

with the development of the Chemical Shift Index or CSI

(Wishart et al. 1992). The CSI method applies a ‘‘digital

filter’’ to backbone 1H and 13C chemical shifts to precisely

identify the type and location of protein secondary struc-

ture elements (helices, b-strands, coils) along a protein

chain (Wishart and Sykes 1994b). The CSI method is

particularly popular because it is easy to implement and

surprisingly accurate with the reported agreement between

X-ray-defined secondary structures and CSI-identified

secondary structure being about 75–85 % (Wishart and

Sykes 1994b; Wishart and Case 2002; Mielke and Krishnan

2004, 2009).

However, the CSI method is not without some short-

comings. For instance, it requires near complete backbone

assignments, it is sensitive to the choice of random coil

shifts used to calculate the secondary shifts, and it identi-

fies a-helices ([90 % accuracy) more accurately than b-

strands (\75 %). Because of these limitations, a number of

alternative CSI-like approaches have been developed over

the past decade, including PSSI (Wang and Jardetzky

2002a), PsiCSI (Hung and Samudrala 2003), PLATON

(Labudde et al. 2003), PECAN (Eghbalnia et al. 2005), and

2DCSi (Wang et al. 2007a). These methods typically

extend the CSI concept by incorporating more advanced

chemical shift models or additional statistical information.

For instance, PSSI replaced CSI’s simplistic digital filter

with a more sophisticated joint probability model to

improve its secondary structure identification accuracy. On

the other hand, PsiCSI combined the basic CSI concept

with a sequence-based secondary structure routine called

PSIPRED (Jones 1999) to boost its performance. PLATON

used a database consisting of reference chemical shift

patterns from previously assigned proteins to improve its

secondary structure calls, while PECAN employed a

pseudo-energy model that combined sequence data with

chemical shift data to more accurately identify secondary

structure elements. Finally, 2DCSi used two-dimensional

cluster analysis to analyze paired scattering diagrams of all

six backbone chemical shifts to obtain improved secondary

structure identification. All of these methods appear to

achieve three-state secondary structure (Q3) accuracies

better than 80 %.

More recently, sophisticated chemical shift-based sec-

ondary structure assignment approaches that exploit

machine-learning techniques, torsion angle estimates,

sequence homology and far more extensive chemical shift-

structure databases have appeared. These include TA-

LOS? (Shen et al. 2009a), TALOS-N (Shen and Bax

2013), DANGLE (Cheung et al. 2010) and Delta2D (Ca-

milloni et al. 2012). Both TALOS? and TALOS-N predict

backbone torsion angles, as well as secondary structure

locations by using neural networks to match chemical shift

patterns over a five-residue window against a large data-

base of previously assigned proteins with high-resolution

structures. DANGLE exploits some of the same ideas as

TALOS? but employs Bayesian-inference techniques

instead of neural nets to perform its analyses. Delta2D

identifies secondary structure elements and secondary

structure populations in both disordered and native-state

proteins by analyzing the probability distribution of a very

large database of backbone chemical shifts. In general,

these newer approaches have average Q3 prediction accu-

racies between 83 and 86 %.

With ongoing advances in machine learning and with

continued improvements of our understanding of protein

chemical shifts (Wishart 2011; Shen and Bax 2012; Fe-

sinmeyer et al. 2005), we believe that further improve-

ments in shift-based secondary structure identification

accuracy are possible. In particular, by making use of

chemical shift information, sequence information and

predicted backbone flexibility and then integrating this

information using a multi-class Support Vector Machine

(SVM) model we found that it was possible to make

statistically significant improvements (3–8 %) in the

accuracy of shift-based secondary structure assignments.

Since this concept builds from our previous work on the

CSI, we decided to call the new method CSI 2.0. The

level of accuracy achieved by CSI 2.0 suggests that it

could be used to assist with the initial stages of conven-

tional NMR structure generation (i.e. fold identification

via threading or providing useful torsion angle and dis-

tance restraints) as well as a robust alternative to standard

coordinate-based methods for secondary structure

identification.

132 J Biomol NMR (2014) 60:131–146

123



Methods and materials

Data set preparation

Training and testing data set

To construct the database needed to train and test our CSI

2.0 method, we chose a local, manually curated data set

that we previously used to train and test the SHIFTX2

program (Han et al. 2011). An initial data set of *300

X-ray protein structures with good quality NMR assign-

ments was filtered based on following criteria: (1) a reso-

lution \2.1 Å, (2) largely monomeric, (3) free of bound

DNA, RNA or large cofactors, (4) an average pairwise

sequence identity \33 % to any other protein in the data

set, (5) nearly-complete ([90 %) sequential assignment of
1H, 13C and/or 15N backbone chemical shifts, and (6) must

be a BMRB (Ulrich et al. 2008) entry. Several measures

were taken to eliminate chemical shift re-referencing

problems, check chemical shift quality and detect chemical

shift outliers. A more detailed accounting of the data

preparation protocol is provided in the SHIFTX2 paper

(Han et al. 2011). The above selection and filtering process

reduced the data set to 240 proteins. This data set was then

divided into a training set and an independent test set. The

training dataset consisted of 181 proteins (25,205 residues)

whereas the test dataset contained 59 entries (8,078 resi-

dues). Among the training proteins, 146 proteins belonged

to the a ? b folding class, 15 proteins to the all-a, 18

proteins to the all-b and two proteins to the all-coil folding

class. For the test proteins, 52 proteins had an a ? b
architecture, three were all-a and four were all-b. Note that

there were no disordered proteins in the test set. The free

parameters for the secondary structure assignment model

were optimized on the training data set while the test set

was used to perform an independent validation of the

program’s performance.

DSSP (Kabsch and Sander 1983), STRIDE (Frishman

and Argos 1995) and VADAR (Willard et al. 2003) served

as the three programs used to assign reference secondary

structures (‘‘a-helix’’, ‘‘b-strand’’, ‘‘coil’’) in both the

training and test set proteins. These methods assign sec-

ondary structures based on the coordinates of the 3D

structures as well as inferred H-bonds and torsion angles

derived from those coordinates. The normal eight-state

DSSP assignments were transformed into a three-state

(helix, sheet, coil) assignment using the EVA convention

(Eyrich et al. 2001). The same procedure was applied to the

STRIDE output. No such transformation was required for

the VADAR output. According to DSSP, there were a total

of 2,335 b-strand residues (29 %), 2,186 residues in a-

helices (27 %) and 3,557 coil assignments (44 %) in the

test set. STRIDE determined 2,499 residues as b-strands

(31 %), 2,677 as a-helices (33 %) and 2,902 residues as

coil structures (36 %) in the test set. Finally, VADAR

found 2,489 b-strands (31 %), 2,720 a-helices (34 %), and

2,869 coil structures (35 %). According to DSSP, the

training set had a total of 6,837 b-strand residues (28 %),

7,588 residues in a-helices (29 %) and 10,780 coil

assignments (43 %). STRIDE identified 7,368 residues in

b-strands (29 %), 8,857 residues in a-helices (35 %), and

8,980 coil residues (36 %). VADAR identified 7,196 b-

strand residues (28 %), 8,910 a-helical residues (36 %),

and 9,099 coil residues (36 %).

Missing chemical shifts handling and neighbor residue

correction

The completeness of a given protein’s chemical shift

assignments plays a crucial role in determining the per-

formance of any chemical shift-based secondary structure

assignment method (Shen et al. 2009a, b). The current

model is no exception. We assessed the performance of our

CSI 2.0 program using both complete and incomplete shift

assignments. Incomplete shift assignments were found to

negatively affect the accuracy of the secondary structure

assignments by up to 3 %.

As mentioned in the previous section, because a small,

but significant number (\10 %) of chemical shift assign-

ments were missing in some entries in our protein data set,

we needed to take appropriate measures to handle the

assignment gaps. This was done by searching through a

sequence-chemical shift triplet database to fill in any

missing assignments in a manner similar to that described

by Shen et al. (2009a, b). More specifically, each entry in

our database was converted to an amino acid triplet and

each had six backbone (13Ca, 13Cb, 13C, 15N, 1HN, 1Ha)

experimental chemical shifts associated with it (except for

Gly and Pro). To fill in the missing data, the query

sequence triplet was compared with each triplet entry in the

database and scored in terms of sequence and chemical

shift similarity. The ten best scoring triplets were selected

and the average of the ten central residue shifts was used as

a proxy for the missing assignment. This process was

repeated for all missing assignments (except 13Cb for

Glycine, 15N and 1HN for Proline).

Several studies have reported on the significant influ-

ence of the nearest neighbor residues on random coil

chemical shifts (Wishart and Nip 1998; Wang and Jar-

detzky 2002b; Wang et al. 2007b). In particular, it has long

been noted that the preceding amino acid type significantly

affects the 15N and amide proton chemical shift, while the
13C and 1H proton chemical shifts are largely affected by

the identity of the following amino acid. Proper accounting

for these nearest-neighbor effects is critical to accurately

determining protein secondary and tertiary structures from
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chemical shift data (Wishart 2011). Hence, the random coil

chemical shifts for all 20 amino acids were corrected by

neighboring residue correction factors provided in Sch-

warzinger et al. (2001). Finally the secondary chemical

shifts for all six-backbone atoms were calculated by sub-

tracting the sequence-corrected random coil shift from the

observed shift.

Feature set

In developing any kind of machine-learning algorithm it is

necessary to extract a set of input features from the training

data that will be used to infer or calculate the desired

output (in this case, the secondary structure). Features can

either be the raw data (i.e. sequence, chemical shifts, etc.)

or derived data (i.e. estimated accessible surface area) that

is calculated from the raw data. In developing CSI 2.0 we

derived a set of eleven different features from our chemical

shift and sequence data. These features included: (1) shift-

derived beta strand propensity; (2) shift-derived helix

propensity; (3) shift-derived coil propensity; (4) sequence-

derived beta strand propensity; (5) sequence-derived helix

propensity; (6) sequence-derived coil propensity; (7) Ran-

dom Coil Index (RCI) (Berjanskii and Wishart 2005); (8)

real-valued fractional accessible surface area; (9) two-state

relative accessibility classification; (10) multi-sequence

alignment-derived residue conservation score and (11)

PSIPRED (Jones 1999) predicted secondary structure.

Furthermore, for each data point in the protein sequence, a

five-residue window was evaluated, with the central resi-

due being the residue of interest. This translates to a total of

55 features for each data point within the five-residue

window, as each residue had 11 features. Note that all of

the input features were derived from only the sequence and

the backbone chemical shifts.

Secondary chemical shift-based probability of three-state

secondary structure

The shift-based secondary structure probability of a residue

is derived from the secondary chemical shift value of its

constituent atoms. The secondary chemical shift (Dd) is

defined as the difference between the absolute chemical

shift (dabs) and the corresponding (neighbor-adjusted)

random coil (drc) shift (Wishart 2011).

Dd ¼ dabs � drc

The probability of a residue being in one of the three

secondary structure classes ‘‘a-helix’’, ‘‘b-strand’’ or

‘‘coil’’, is derived from its six backbone atom secondary

chemical shifts, as described in (Wang and Jardetzky

2002a). For each backbone atom, a Gaussian probability

distribution is assumed, where the two parameters for the

distribution (l and r) correspond to the average (l)

chemical shift value (for each of the three different sec-

ondary structure states) and the standard deviation (r) of

the chemical shift distribution respectively. These statisti-

cal parameters were derived from the ‘‘RefDB’’ database

(Zhang et al. 2003). Therefore, given (Ddn) {n = DdCA,

DdCB, DdC, DdHA, DdHN, DdN}, the six experimental

backbone secondary chemical shifts for a given residue i,

the joint probability of being in one of three secondary

structure states can be calculated from the Gaussian dis-

tributions of the six backbone atom types of non-Gly/Pro

residues (five in case of Gly and four in case of Pro). The

joint probability equation is formulated as:

Ps
i Ddnð Þ ¼ P

Y

n

Gs
i Ddnð Þ

where p represents the probability or likelihood for an

amino acid of type i being in the secondary structure type s

(s = (‘‘a-helix’’, ‘‘b-strand’’, ‘‘coil’’)). Note that this

probability or likelihood p can also be described by amino

acid conformational preference and is calculated using the

same method described in the next paragraph. Gs
i repre-

sents the Gaussian distribution of a particular atom for

amino acid type i and secondary structure type s.

Gs
i ¼

1ffiffiffiffiffiffiffiffiffiffiffiffi
2prs

i;n

p exp �
ðDdn� Ddn

s

i;nÞ
2

2r2
n;s;i

 !

The joint probability Ps for each residue is normalized

so that its sum of three secondary structure types is equal to

1.0.

Sequence based probability of three-state secondary

structure

The conformational preference for an amino acid is taken

into account using this feature. Each amino acid has a

predisposition to assume a specific secondary structure

type, which is referred to as its conformational preference.

We derived the secondary structure conformational pref-

erences for all 20 amino acids using an in-house high-

resolution sequence-structure database (the sequences and

secondary structures in FASTA format are available on the

CSI 2.0 website). This database contains 2100 X-ray

structures that share no more than 33 % sequence identity

with each other, have an R-value B0.2 and a resolution

B1.5 Å. These proteins were extracted using the PISCES

server (Wang and Dunbrack 2003) via the PDB (Berman

et al. 2000) and the secondary structures were assigned via

DSSP (Kabsch and Sander 1983). The conformational

preference statistic was calculated as follows: given a

residue i, and the available secondary structure conforma-

tion s (s = (‘‘a-helix’’, ‘‘b-strand’’, ‘‘coil’’)) that it can
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adopt, then the equation to calculate the conformational

preference is given as (Levitt 1978):

Cs
i ¼

Ts
i =Ts

Ti=T

where Ts
i denotes the total number of residues i adopting

conformation S, while Ts is the total number conformation

S observed in the database, Ti is total number of residues of

type i. T represents the total number of different residue

types in the database. The conformational preference of

each residue for three secondary structure types is then

normalized so that its sum is equal to 1.0.

Random Coil Index (RCI) for backbone atoms

The RCI for protein backbone atoms is an easily calculated

measure that corresponds to the flexibility of an amino acid

on a residue-level as derived from backbone chemical

shifts (Berjanskii and Wishart 2005). The backbone RCI

quantitatively traces the relative amount to which a protein

backbone’s chemical shifts match with the random coil

values. Those that are closer to random coil values are the

most flexible, while those that are most different from

random coil values are least flexible. This feature was

calculated using the RCI equation provided in the original

RCI paper.

Relative accessible surface area

The solvent accessibility of a residue is a measure of an

amino acid’s (especially its side chain) solvent exposure.

Generally unstructured coils or other highly hydrophilic

regions are more accessible to water than hydrophobic

helices or beta-strands. This trend can be exploited to

obtain useful information for identifying protein secondary

structures. Recent publications suggest that including sol-

vent accessibility along with sequence information can

improve secondary structure prediction accuracy (Adamc-

zak et al. 2005; Momen-Roknabadi et al. 2008). In an effort

to include solvent accessibility in CSI 2.0 we developed a

machine learning regression model that estimates real

numerical value of each residue’s fractional accessible

surface area (fASA). The fASA is equal to the accessible

surface area measured for a given residue (X) in a protein

divided by the ASA for that residue in a G-X-G tripeptide.

The fASA varies between 0.0 (fully buried) to 1.0 (fully

exposed). The regression model we developed uses two

sequence derived features (hydrophobicity and sequence

conservation score) and two chemical shift-derived fea-

tures (3-state structural probability using six backbone

chemical shifts and the RCI) to calculate the fASA. The

model was trained on a dataset of 28 proteins with known

3D coordinates and near-complete 1H, 13C and 15N

chemical shift assignments and validated on a test set of 66

proteins (with known 3D coordinates and near-complete

chemical shift assignments). The fASA for all training and

test proteins was calculated using VADAR (Willard et al.

2003). The correlation between the observed fASA and the

predicted fASA was 0.76. This fASA value was then

incorporated into the CSI 2.0 feature set in the same

manner as all other features. Additional details regarding

this shift-based fASA prediction method, its performance

and its potential applications will be described in a forth-

coming manuscript.

Two-state buried-exposed class

The two-state buried-exposed classification assignment is

simply a transformation of the fractional ASA (fASA) into

two discrete classes obtained by applying a 25 % fASA

cutoff. In other words, if the fASA is greater than 0.25, the

residue is assigned to an ‘‘exposed’’ state, otherwise the

residue is said to be ‘‘buried’’. This information was

derived from the chemical shift-based fASA calculation

described above.

Residue conservation score

Sequence conservation is a measure of how frequently a

given residue is seen at an equivalent position, in an

equivalent protein, across different species. Generally

highly conserved residues are buried within the protein’s

core, and less conserved residues are more exposed (albeit

with some exceptions). The conservation score for each

residue position can be calculated as described by Valder

(2002). First, a three-iteration PSI-BLAST (Altschul et al.

1997) search is performed on the UniRef90 clustered

database (UniProt Consortium 2010). From the identified

hits a multiple sequence alignment is then performed using

ClustalOmega (Sievers et al. 2011). The conservation score

for each column in the alignment (i.e. each residue in the

target sequence) is then calculated using Shannon’s

entropy formula as described below,

s xð Þ ¼ k
XK

a

pa log pa

where pa is the probability of observing the ath amino acid

and k is the scaling factor and defined as,

k ¼ ½logðminðN;KÞÞ��1

where N = number of sequences in the alignment,

K = length of the amino acid alphabet. The probability of

observing the ath amino acid is the summed weight of

sequences having the symbol a in the position x in the

sequence which is defined as,
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pa ¼
X

wi

where wi is the weight of the ith sequence with wi being

defined as,

wi ¼
1

L

XL

x

1

kxnx

where L = length of the alignment, kx = the number of

amino-acid types present at the xth position, nx = the

number of times the ath amino acid occurring in the ith

sequence at the xth position.

PSIPRED predicted secondary structure

In an effort to boost the performance of CSI 2.0 we supple-

mented our method with another powerful secondary structure

identification tool called PSIPRED (Jones 1999). PSIPRED is

a pure sequence-based secondary structure prediction method

developed in the 1990s. It has been refined and improved upon

over the last decade and is generally considered one of the

most accurate sequence-based prediction methods available,

with a typical performance of[80 % (Hung and Samudrala

2003). Previous authors have observed a slight boost to the

performance of their shift-based secondary structure assign-

ment routines by including this information in their algorithm

(Hung and Samudrala 2003). As a result we also added a

PSIPRED (sequence-based) prediction as one of the features

to CSI 2.0. Therefore, PSIPRED (version 3.3) predicted sec-

ondary structure state for each residue is included in the CSI

2.0 feature vector for the training data points.

Feature normalization

A z-score normalization step was done to normalize the

features in the training and the test data set. Assuming there

are N1,…, Ni…, Nt rows in the training set, with each row

containing M1…, Mj…, Mn different features (columns),

then the normalized value of element e
j
i at the ith row and

jth column is calculated as:

Normalized e
j
i

� �
¼ e

j
i � �Ni

stdðNiÞ

where

�Ni ¼
1

t

Xt

i¼1

ei and

std Nið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðn� 1Þ
Xt

i¼1

ðei � �NiÞ2
s

All test features were normalized using the mean and

standard deviation derived from the training feature

distribution.

Multi-class SVM training

With a five-residue window, there were total 25,205 data

points in our training set. All data points were normalized

prior to the training. Two different normalization methods,

a ‘‘Statistical Z-score’’ and a ‘‘Max/Min’’ score were

assessed, with the ‘‘Statistical Z-score’’ ultimately being

selected. In our multi-class SVM model, a Radial Basis

Function (RBF) kernel was used to map the features from a

higher dimensional space to a lower dimensional space by

computing dot product between the features. Using this

type of ‘‘dimensional reduction’’, the performance of SVM

classification depends on the following two parameters: (1)

the regularization parameter ‘‘C’’ (also known as the

‘‘cost’’ factor) and (2) the Gaussian kernel width ‘‘r’’. The

‘‘C’’ parameter allows one to adjust the trade-off between

maximizing the decision-boundary width and minimizing

the number of misclassified samples in the training set. The

‘‘r’’ parameter controls the width of Gaussian kernel and

can be adjusted to help minimize the number of misclas-

sified test examples. These two parameters were optimized

using a repeated tenfold cross validation (CV). The goal of

the parameter optimization was to find the optimal values

that maximizes the accuracy or Q3 score of the three-class

secondary structure classification. The Multi-class SVM

implementation in the R package ‘‘kernlab’’ was used to

train the classifier (RDC 2009; Karatzoglou et al. 2004).

The optimization of ‘‘C’’ and ‘‘r’’ through the ‘‘repeated-

cv’’ method was performed using the train() function in the

‘‘caret’’ package in R (Kuhn 2008).

A multi-residue Markov model for post-assignment

filtering

While the SVM classifier (described above) generally

performs very well it is still prone to making confusing,

meaningless or ‘‘scrambled’’ secondary structure assign-

ments such as: CCBHH or BBHCC or HCHCH. This is

also a common problem for many other secondary structure

prediction/assignment methods such as PSIPRED, TA-

LOS-N or DANGLE. Most programs use heuristic ‘‘char-

acter smoothing’’ that employ ‘‘if–then-else’’ ladders or

character averaging to correct or eliminate these problem

assignments. However, these heuristic methods are not

very robust nor are they very accurate. A more robust

method to perform character smoothing or character cor-

rection is to use a Markov model (Durrett 2010). Markov or

hidden Markov models are widely used methods for text

filtering, pattern extraction and natural language process-

ing. This also makes them ideally suited to treating the

‘‘scrambled’’ text problem. After assessing character win-

dow widths of three, five, seven and nine residues, a seven-

residue Markov model was found to be optimal to handle
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scrambled or discontinuous segments of secondary struc-

ture. This Markov filtering involved sliding a trained,

seven-residue Markov filter along the protein chain that

identified scrambled secondary structure assignments and

then corrected them as necessary. According to this multi-

residue Markov model, if there are n ¼ t1; t2; . . .; tnð Þ resi-

dues in a single pattern along the protein chain, then the

probability of observing ith residue in that pattern depends

on the observed probabilities of the preceding (i - 1)

residues. This can be expressed by the following equation,

P t1; t2; . . .; tnð Þ ¼
Yn

i¼1

Pðtijt1; t2; . . .; ti�1Þ

The conditional probability of observing a residue in ith

location given the history of the preceding (i - 1) residues

is calculated from [t1; t2; . . .; ti�1) and [t1; t2; . . .; ti) pattern

frequency counts.

Pðtijt1; t2; . . .; ti�1Þ ¼
countðt1; . . .; ti�1; tiÞ
countðt1; . . .; ti�1Þ

To calculate the probability of a seven-residue pattern, the

frequencies of smaller patterns consisting of one, two, three,

etc. up to six residues are extracted from the training database

of reference structures. An example formula to calculate the

probability of a five-residue pattern HHBCC is as follows:

P HHBCCð Þ ¼ P CjHHBCð Þ � P CjHHBð Þ � P BjHHð Þ
� P HjHð Þ � P Hð Þ

and a probability value like P CjHHBCð Þ can be calculated

by following equation,

P CjHHBCð Þ ¼ countðHHBCCÞ
countðHHBCÞ

The probability cutoff to validate a pattern is chosen as

0.00 (i.e. if the probability of a multi-residue pattern, along

with its two preceding and following patterns is found to be

equal to the cut-off value, then the central pattern is con-

sidered to be ‘‘scrambled’’). For a scrambled secondary

structure pattern to be identified, the outlier must be either

in the middle, or any of the two adjacent positions. The

outlier is then corrected by looking at the secondary

structure assignments of the four surrounding residues.

Evaluation metrics

Q3-accuracy

Q3-accuracy is the most widely used metric to evaluate

three-state secondary structure predictions or assignments.

It is the ratio of correctly predicted or identified states

divided by the total number of amino acids or residues in

the dataset. Q3-accuracy is simply defined as:

Q3 ¼ NP

N

where Np is the total number of residues for which sec-

ondary structure state is predicted correctly by the model

and N is the total number of residues in the example set.

Segment-Overlap (SOV) score

The Segment-OVerlap score (SOV) is based on the average

overlap between the observed and predicted segments. It is

designed to evaluate the correctness of segment prediction

with respect to a reference assignment (Rost et al. 1994;

Zemla et al. 1999). The SOV score measures how much the

predicted segments deviate from experimental segment

length distributions. The definition of the SOV score for a

secondary structure i, where i 2 H;B;Cð Þ;

SOVi ¼
1

Ni

X

Si

minOV s1; s2ð Þ þ dðs1; s2Þ
maxOVðs1; s2Þ

� lenðs1Þ

here, s1 and s2 are the observed and predicted secondary

structure segments in one of the three states; Si is the

number of all segment pairs s1; s2ð Þ;where s1and s2 con-

tains at least one residue in ith state in common,

minOV s1; s2ð Þ is the length of actual overlap of s1and s2

and maxOV s1; s2ð Þ is the length of the total extent for

which either of the segments s1or s2 has a residue in ith

state. Ni is the total number of residues observed in the ith

conformation. d s1; s2ð Þ is defined as,

d s1; s2ð Þ ¼ min

maxOV s1; s2ð Þ � minOV s1; s2ð Þ
minOVðs1; s2Þ

int 0:5� len s1ð Þð Þ
intð0:5� lenðs2ÞÞ

8
>><

>>:

9
>>=

>>;

where len s1ð Þ is the number of residues in the segment s1.

The SOV measure for all three states, SOVall is defined as,

SOVall¼
1

N

X

i2H;B;C

X

Si

minOV s1;s2ð Þþdðs1;s2Þ
maxOVðs1;s2Þ

� lenðs1Þ
 !

�100

where s1 and s2 are the observed and predicted secondary

structure segments in ith state. N is the total length of

proteins under consideration.

Results and discussion

As described earlier in the ‘‘Methods and materials’’ sec-

tion, the ‘‘C’’ parameter (the ‘‘cost’’ value) in the SVM

classifier and the kernel parameter, ‘‘r’’ in the Gaussian

RBF kernel were optimized using tenfold Cross Validation

(CV). After achieving an optimal value of 0.0157, ‘‘r’’ was
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held constant while ‘‘C’’ was iteratively changed to opti-

mize its value. To achieve an unbiased training result, the

whole process was repeated five times. For each repetition,

the accuracy of the three-state assignment of the training

classes was measured. The optimal ‘‘cost’’ and ‘‘r’’ values

that were found to maximize the Q3 accuracy using this

repeated training were 2.0 and 0.0157 respectively. The

training accuracy was averaged over five repetitions of the

tenfold CV process. A training accuracy of Q3 = 90.56 %

on 181 training proteins was observed with the aforemen-

tioned optimized parameter values. A test accuracy of

Q3 = 89.35 % was achieved on an independent test set of

59 proteins.

The final set of weighting coefficients for the sequence

and chemical shift-based features in our multi-class SVM

model are listed in Table 1. The sum of all the weights

(over the five residue positions) for chemical shift-derived

features was 683 while the sum of all the weights for the

sequence-derived features was 202 (a difference of 3.4X).

Among individual features, the PSIPRED predicted sec-

ondary structure for the central residue (residue i) was

found to have the largest single weight in the SVM for-

mulation (|w| = 58.0). The second largest weighted feature

(|w| = 54.0) was the b-strand propensity calculated from

backbone chemical shifts at the central residue location.

Chemical shift derived a-helix, b-strand and coil proba-

bility scores in the central residue or immediate neighbor

locations were found to be moderately relevant in terms of

their weighting. Both protein flexibility (RCI) and solvent

accessibility (fASA) at the (i - 1) location had larger

weights than the same feature values at other residue

positions. Interestingly the RCI and fASA weightings also

proved to be more important than the sequence conserva-

tion scores. Given the 3.4X greater weight attached to shift-

derived features in CSI 2.0’s final SVM model, we believe

it is fair to claim that CSI 2.0 is essentially a chemical shift

based method that incorporates a small amount of sequence

information. This assertion is also borne out by the fact that

the performance of CSI 2.0 (without the sequence-based

prediction) was only 2 % worse than the version with

sequence-based prediction (see below).

CSI 2.0 comparative performance

In Table 2, we compare the performance of our CSI 2.0

method with seven hybrid (chemical shift and sequence-

based) and one pure sequence-based secondary structure

identification/prediction programs. The eight programs are:

TALOS? (Shen et al. 2009a), TALOS-N (Shen and Bax

2013), DANGLE (Cheung et al. 2010), CSI (Wishart et al.

1992), PSSI (Wang and Jardetzky 2002a), Delta2D (Ca-

milloni et al. 2012), Psi-CSI (Hung and Samudrala 2003)

and PSIPRED (Jones 1999). The performance of all eight

programs was evaluated on the basis of: (1) Q3-accuracy of

predicting three different structure states; (2) individual

structural state (‘‘a-helix’’, ‘‘b-strand’’, ‘‘coil’’) prediction

accuracy; (3) Segment-Overlap or SOV score; and (4)

coverage (proportion of residues in the test set that were

predicted). For Table 2, the first column indicates the name

of the prediction model, while the second, third, and fourth

columns indicate the accuracy for each category of sec-

ondary structure. The fifth column presents the overall Q3-

Table 1 Weighting coefficients (|w|) of chemical-shift and sequence-

derived features for CSI 2.0’s SVM model

Feature Weight

Coeff.

Feature Weight

Coeff.

ProbBCS(i - 2) 19.88598 ProbCAA(i ? 1) 14.47068

ProbBCS(i - 1) 47.83482 ProbCAA(i ? 2) 12.65604

ProbBCS(i) 53.96416 RCI(i - 2) 11.71170

ProbBCS(i ? 1) 21.52516 RCI(i - 1) 29.60009

ProbBCS(i ? 2) 9.230448 RCI(i) 19.74642

ProbHCS(i - 2) 8.925556 RCI(i ? 1) 14.32193

ProbHCS(i - 1) 29.11158 RCI(i ? 2) 7.806794

ProbHCS(i) 25.97708 RSA(i - 2) 4.939002

ProbHCS(i ? 1) 5.456130 RSA(i - 1) 30.64792

ProbHCS(i ? 2) 14.17828 RSA(i) 22.54183

ProbCCS(i - 2) 12.56523 RSA(i ? 1) 14.22241

ProbCCS(i - 1) 19.28457 RSA(i ? 2) 10.04285

ProbCCS(i) 31.72981 BuriedExposed(i - 2) 0.931595

ProbCCS(i ? 1) 19.65260 BuriedExposed(i - 1) 14.87281

ProbCCS(i ? 2) 8.465084 BuriedExposed(i) 1.417325

ProbBAA(i - 2) 2.680083 BuriedExposed(i ? 1) 15.17127

ProbBAA(i - 1) 21.07358 BuriedExposed(i ? 2) 1.813477

ProbBAA(i) 9.595489 Scon(i - 2) 10.84571

ProbBAA(i ? 1) 23.39969 Scon(i - 1) 10.29277

ProbBAA(i ? 2) 7.901136 Scon(i) 18.86649

ProbHAA(i - 2) 3.968213 Scon(i ? 1) 8.360907

ProbHAA(i - 1) 6.390549 Scon(i ? 2) 22.17609

ProbHAA(i) 3.372710 PSIPRED(i - 2) 17.87049

ProbHAA(i ? 1) 8.024158 PSIPRED(i - 1) 28.21943

ProbHAA(i ? 2) 8.566371 PSIPRED(i) 57.99818

ProbCAA(i - 2) 5.022616 PSIPRED(i ? 1) 20.72087

ProbCAA(i - 1) 22.44050 PSIPRED(i ? 2) 6.860726

ProbCAA(i) 5.881907

The position of the feature over a five-residue window is given using

standard indices in parentheses. The feature name abbreviations are as

follows: ProbBCS = b-strand probability using chemical shift,

ProbHCS = a-helix probability using chemical shift, Prob-

CCS = coil probability using chemical shift, ProbBAA = b-strand

probability using amino acids, ProbHBAA = a-helix probability

using amino acids, ProbCAA = coil probability using amino acids,

RCI = Random Coil Index (protein flexibility), RSA = fractional or

real-valued solvent accessibility, BuriedExposed = 2-state (Buried/

Exposed) solvent accessibility, Scon = residue conservation score,

and PSIPRED = PSIPRED predicted secondary structure
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accuracy, while the last four columns indicate the individ-

ual and overall SOV-scores. The last column shows the

percent coverage (proportion of residues of test data that

were identified or predicted) by each method. As seen in this

table, CSI 2.0 achieves the best overall Q3 and SOV scores

while Psi-CSI and TALOS-N are essentially tied for second

in their overall performance. With regard to the perfor-

mance for individual secondary structure state (helix, sheet,

coil) identification, CSI 2.0 also shows superior accuracy

for all three-structure states. In particular, for DSSP-refer-

enced structures, CSI 2.0’s performance was an average of

10.87 % better in case of b-sheet identification, and 8.59 %

better for coil identification, than the eight other chemical

shift and sequence-based methods (see Table 2). For helix

identification, the CSI 2.0 shows a comparable performance

with respect to other methods. In terms of the SOV measure,

the same trend is observed. Although the Q3 accuracy of

CSI 2.0’s residue-specific helix assignments was not much

better than existing programs, its higher average SOV-

score indicates a better agreement for helical segments. The

same is true for the overall SOV-score for all three-sec-

ondary structure types. In terms of SOV-scores, the next

best performance was seen for the most recent program,

TALOS-N (Shen and Bax 2013). CSI 2.0’s assignments,

unlike most of other programs, covers the full fraction

(&100 %) of the test data points.

Statistical significance of CSI 2.0’s improvement

As indicated in Table 2 and Fig. 1, the best-performing

methods all achieve Q3 accuracies above 80 % and the

difference between CSI 2.0 and the other top performing

programs is only 3–4 %. One may ask is this performance

improvement statistically significant? To address this

question we performed a Student’s t test to assess the

p value between CSI 2.0 and TALOS?, TALOS-N,

DANGLE and Psi-CSI. The results are shown in Table 3.

These data confirm that the performance improvement seen

in CSI 2.0 is, indeed, highly significant with most p values

being �0.001.

CSI 2.0 performance using selected and partial shift

assignments

It is not particularly common for a protein to have all 1H,
13C and 15N backbone shifts fully assigned. Indeed, many

shorter peptides and proteins will only have their 1H

assignments completed, while larger proteins may only

have their 1H and 15N shifts, 15N and 13C shifts or 1H and
13C shifts assigned. Given that only certain nuclei may be

Table 2 Performance of CSI

2.0 and eight other chemical

shift and sequence-based

methods on an independent test

set of 59 proteins (total 8,078

residues) when using ‘‘DSSP’’

(Kabsch and Sander 1983)

secondary structure assignments

as the reference structure.

Columns 2–5 correspond to Q3

scores while columns 6–9

correspond to SOV scores

Methods Helix Beta Coil Q3-score Helix Beta Coil SOV-score % coverage

TALOS? 93.39 77.93 80.34 83.89 80.09 80.73 83.58 84.83 97.80

TALOS-N 95.54 82.65 79.08 86.39 88.78 85.71 83.08 87.85 97.70

DANGLE 95.88 80.0 76.44 83.0 80.61 80.58 81.46 83.66 98.60

CSI 84.17 67.40 84.23 80.33 76.01 69.34 71.53 75.18 100

PSSI 62.85 70.77 62.58 67.33 59.49 73.39 72.62 71.37 96.80

d2D 43.29 33.17 36.73 42.24 42.58 38.20 42.28 42.82 48.24

Psi-CSI 92.88 80.0 85.53 86.20 89.02 81.43 83.06 86.94 100

PSIPRED 85.95 79.17 88.11 85.36 72.08 63.74 63.00 79.00 100

CSI 2.0 93.41 86.50 87.80 89.35 90.76 85.34 82.75 88.45 100

Fig. 1 A bar graph comparing CSI 2.0’s Q3 accuracies with eight

other chemical shift and sequence-based protocols over an indepen-

dent test set of 59 proteins. The error bar (i.e. standard deviation in

Q3-accuracy of each method) appears on top of each bar plot

Table 3 The p values or probabilities of Student’s two sample t tests

between CSI 2.0 and four other best performing methods are shown

Method1 versus Method2 p value

CSI 2.0 versus TALOS? 6.575e-08

CSI 2.0 versus TALOS-N 0.0016

CSI 2.0 versus DANGLE 6.347e-08

CSI 2.0 versus Psi-CSI 0.00087

Here the null hypothesis is that the difference between sample1 mean

(mean accuracy of method1) and sample2 mean (mean accuracy of

method2) is equal to zero. Alternative hypothesis indicates that the

sample1 mean is greater than the sample2 mean
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measured we decided to evaluate CSI 2.0’s performance

using only selected sets of chemical shifts or selected

nuclei. The results are listed in Table 4 for five individual

backbone nuclei (13Ca, 13C, 13Cb, 1Ha, 15N) along with

other common assignment combinations (13Ca, 13C, 13Cb,
1Ha and 1Ha, 15N). As can be seen from this table, com-

binations of multiple nuclei give the best performance, but

the performance for any single nucleus is surprisingly good

(Q3 [85 %). This is because CSI 2.0 also uses sequence

information (i.e. PSIPRED predicted secondary structures)

to supplement its chemical shift-derived estimates. As was

noted in the original CSI papers (Wishart et al. 1992;

Wishart and Sykes 1994b) certain nuclei carry more

information about secondary structures than others. In

particular, the ranking of nuclei for secondary structure

information content, from most informative to least infor-

mative, is: 13Ca [ 13C [ 13Cb & 1Ha [ 15N.

Because it is often difficult to obtain complete chemical

shift assignments for a protein (due to signal broadening

from intermediate exchange events, signal overlap, solvent

suppression, etc.) we were also interested to see how well

CSI 2.0 performed with partial or incomplete chemical

shift assignments. To do so we evaluated the performance

of CSI 2.0 relative to the percentage of missing chemical

shift assignments and compared its results to several other

software packages. We analyzed a subset of 21 proteins

(from our test set of 59 proteins) with a fraction of missing

assignments [15 %. In particular, for this set the percent-

age of incomplete or missing backbone 1H, 13C or 15N

assignments ranged from 16.7 to 37.0 % (based on the total

number of expected NMR signals from the protein’s amino

acid sequence). The secondary structures of these proteins

were then determined using five different methods

(including CSI 2.0) and evaluated against the observed

secondary structures as determined by DSSP. The results

are shown in Table 5. As can be seen from this table, CSI

2.0 does significantly better (*7–10 %) in terms of Q3

accuracy than any of the other methods in terms of han-

dling missing shift data. Furthermore, for all of the meth-

ods (except CSI 2.0) there is a general trend (r \0.5)

showing a degradation in their performance with an

increasing fraction of missing chemical shifts. Interest-

ingly, CSI 2.0 seems to be largely immune to any detect-

able performance degradation with respect to missing

chemical shifts (at least up to a level of *35 % missing

shifts). This appears to be due to its robust handling of

missing shift data (described earlier) as well as its use of

sequence-based secondary structure prediction from

PSIPRED.

Different definitions of secondary structure

Secondary structure is not an absolute quantity nor is it

universally defined. In other words, there is no gold stan-

dard for secondary structure. Different definitions exist of

helices, b-strands, b-turns and coils (Zhang et al. 2008). As

a result, no two individuals and no two coordinate-based

secondary structure assignment programs will agree on the

exact start and end locations of many secondary structure

elements (Tyagi et al. 2009; Shen et al. 2009a). Likewise

some programs (or some individuals) will invariably clas-

sify short helices and short beta-strands as coil structures

and vice versa. Given the variation in secondary structure

‘‘calling’’ from well-defined 3D structures and the fact that

there are several different secondary structure identification

algorithms that are widely used by structural biologists, we

decided to investigate the performance of CSI 2.0 and the

other eight programs against three of the most commonly

used coordinate-based secondary structure assignment

algorithms: DSSP (Kabsch and Sander 1983), STRIDE

(Frishman and Argos 1995) and VADAR (Willard et al.

2003). Table 6 lists the Q3-accuracies of the eight sec-

ondary structure prediction/identification programs when

compared against the calls made by locally installed ver-

sions of DSSP, STRIDE and VADAR. As can be seen in

this table, CSI 2.0 agrees best with the DSSP secondary

structure assignments while its performance drops slightly

with the STRIDE or VADAR calls. The same trend is seen

with the other eight programs as well. This is largely due to

the fact that essentially all of these programs were trained

using DSSP data, as opposed to STRIDE or VADAR data.

It is worth noting that PSIPRED (which is used by both Psi-

CSI and CSI 2.0) was also trained exclusively on DSSP

data. Attempts to train CSI 2.0 with STRIDE or VADAR

secondary structure calls yielded no overall improvement

in the performance.

It is also interesting to note that the pairwise agreement

between the three different secondary structure assignment

methods (DSSP, STRIDE and VADAR) in our independent

test dataset ranged from 85 to 90 % with an average

pairwise agreement of 87.63 %. Furthermore, the overall

agreement between all three methods was only 82 %. This

suggests that secondary structure identification is

Table 4 CSI 2.0 performance with selected chemical shift assign-

ments and combinations of shift assignments

Shift assignment Helix Beta Coil All

13Ca 84.38 93.36 87.90 88.72
13C 83.41 90.22 87.95 87.37
13Cb 84.37 87.03 86.59 86.50
1Ha 83.59 87.22 87.21 86.83
15N 82.63 85.74 86.68 85.68
13Ca, 13C, 13Cb, 1Ha 81.46 92.89 98.98 90.92
1Ha, 15N 81.47 92.45 98.99 90.77
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inherently imprecise and that the best possible performance

that a secondary structure identifier (or predictor) could

attain is probably no better than 90 %. Given that all of the

proteins we studied had both X-ray structures and NMR

structures, we also investigated the level of agreement

between the secondary structure assigned via more con-

ventional NMR approaches (NOEs, J-couplings) or via

author-assigned secondary structure assignments with

those generated from the coordinate data (determined by

DSSP, VADAR or STRIDE). Among the coordinate–based

assignment methods, STRIDE showed the highest level of

agreement (90.05 %) with the author assignments, while

DSSP and VADAR had slightly lower levels of agreement

(88.54 and 84.54 % respectively). Again, this level of

agreement between secondary structure assignment meth-

ods (human vs. computer) suggests that CSI 2.0 is per-

forming near the maximum level of accuracy achievable

for secondary structure assignment.

Local interaction effects

Regular secondary structure is formed when the local envi-

ronment induces nearby residues to interact and adopt a spe-

cific pattern such as an ‘‘a-helix’’ or a ‘‘b-strand’’. Hence, local

interactions and nearest neighbor data (such as nearby shifts

and amino acids) can provide important information about the

secondary structure propensity of a certain region. To capture

these local interaction effects, we assessed CSI 2.0’s perfor-

mance using several different residue window lengths (three,

five and seven residues). Our data indicated that CSI 2.0

achieved its best performance, in terms of Q3-accuracy, when

using a five-residue window (data not shown for other win-

dows). No significant improvement was achieved by including

more than four neighbors (two preceding and two following).

This indicates that the features of immediately nearby residues

provide the most useful secondary structure information.

Table 5 Comparison of the

performance of CSI 2.0 versus

other four methods (Psi-CSI,

TALOSN, TALOS?,

DANGLE) relative to the

percentage of missing backbone
1H, 13C or 15N chemical shift

assignments

PDB BMRB Percent missing shifts CSI 2.0 Psi-CSI TALOSN TALOS? DANGLE

1HQ2 4300 27.60 92.76 83.55 71.71 69.08 77.68

1T8L 5358 21.88 96.36 83.64 83.64 83.64 80.00

1JTG 6357 20.81 85.27 78.29 75.97 77.13 81.01

1UDR 4083 18.23 95.04 86.78 90.08 90.91 81.82

1ODV 6321 18.14 84.00 83.00 87.00 83.00 84.00

1W80 6034 23.24 88.74 76.62 75.76 73.16 74.03

1V9T 4037 16.68 86.50 82.82 81.60 79.75 76.07

2AOJ 5967 34.65 85.26 71.58 85.26 82.11 82.11

1CWC 2208 17.64 91.98 76.54 82.10 77.16 81.48

1YKY 4831 35.14 92.97 82.81 81.25 68.75 80.47

1KDB 6250 21.98 84.78 83.70 67.39 65.22 77.17

2A38 5760 37.01 91.62 85.86 74.35 79.06 79.06

256B 6560 17.68 93.07 92.08 94.06 95.05 93.07

1BT5 6024 19.32 88.03 81.85 84.17 81.08 78.38

1SGZ 6016 23.40 78.43 69.68 57.14 53.94 65.01

1SYD 15232 22.17 91.38 82.76 82.76 81.90 78.45

1JR2 7242 18.30 88.85 83.46 86.15 83.85 83.85

1U7B 15501 20.12 90.73 83.47 84.27 80.24 79.44

2A0 N 15741 20.45 89.60 83.60 88.40 84.00 82.00

2DYI 10139 24.69 86.84 73.03 78.29 72.37 68.42

1B1H 10053 18.02 86.62 81.10 81.95 77.92 79.83

Average 22.72 88.99 81.25 80.63 78.06 79.21

Table 6 Percentage Q3-accuracies of the CSI 2.0 protocol and eight

other methods over an independent test set of 59 proteins using three

different reference [DSSP (Kabsch and Sander 1983), STRIDE

(Frishman and Argos 1995) and VADAR (Willard et al. 2003)]

structures

Assignment method DSSP STRIDE VADAR

TALOS? 83.89 82.07 81.47

TALOS-N 86.36 85.62 83.89

DANGLE 83.0 81.40 81.0

CSI 80.33 74.64 76.29

PSSI 67.33 65.15 64.0

d2D 42.24 40.66 41.16

Psi-CSI 86.20 83.53 82.17

PSIPRED 85.36 79.81 78.0

CSI 2.0 89.35 86.72 86.10
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Mis-assigned secondary structures

As accurate as CSI 2.0 appears to be, it still exhibits less-

than-ideal performance with regard to distinguishing

between b-strands and coil regions. In our test data set,

there were a total of 2,335 residues in b-strands, in which

CSI 2.0 correctly identified 2,019 of them (see Table 7).

However, it also mis-identified 316 residues as ‘‘coils’’, or

about 13.5 % of the b-strand population. On the other

hand, a somewhat smaller percentage of coil residues

(7.9 %) were also incorrectly identified as being in b-

strands. The probable reason for this is the high degree of

chemical shift and amino acid compositional similarity

between these two structure types. Indeed, the chemical

shifts in b-strands and coil regions tend to exhibit more

similarity to each other than to helices. Furthermore, as we

discovered on further inspection, many of the mis-identi-

fications occurred at the borders or edges of b-strands and

coil regions. While some ambiguity or mis-identification

would be expected between the borders of secondary

structure elements or short b-strands and extended coil

regions, one would hope that there would be no ambiguity

between b-strands and helical regions. Therefore it is worth

noting that CSI 2.0 did not confuse any b-strands with a-

helices and vice versa. In a few cases (6.5 %), CSI 2.0

failed to recognize a-helical residues and identified them as

‘‘coil’’. Likewise, about 4 % of coil residues were mis-

identified as a-helices. Once again, many of the mis-

identifications occurred at the borders or edges of a-helices

and coil regions. In all likelihood these misidentified

helices were somewhat flexible or only partially helical

under the solution conditions that were originally used to

collect the NMR data. The fact that protein structures do

sometimes differ between crystal forms (solved by X-ray

methods) and in solution (solved by NMR) has been noted

for many years. Indeed, there are many examples showing

these discrepancies (Andrec et al. 2007; Ratnaparkhi et al.

1998). It is also important to remember the agreement

between the secondary structures determined by conven-

tional NMR methods and those determined using X-ray

data typically differ by 5–10 %.

Identification of 310 helices and b-bridges

310-Helices are short helical structures with an average

length of three residues and a distorted hydrogen-bonding

network, whereas b-bridges are single-residue b-strands.

Only the DSSP program identifies these structures and

consolidates them into a-helices and b-strands. On the

other hand, STRIDE and VADAR often characterize them

simply as ‘‘coil’’. In looking more closely at our results, we

found that CSI 2.0, regardless of its training set, would

identify isolated 310 helices and b-bridges as simple ‘‘coil’’

structures. This underscores one of the challenges with

secondary structure identification, namely the fact that

different programs (and different structural biologists) have

different opinions or different definitions of what second-

ary structures are. Interestingly CSI 2.0 still performed best

when it was working with DSSP assigned secondary

structures (as opposed to VADAR or STRIDE assign-

ments)—even with the presence of these ‘‘hard-to-iden-

tify’’ 310 helices and b-bridges.

PSIPRED improves performance

CSI 2.0 was originally intended to be a chemical shift-only

method. However, the exceptional performance of Psi-CSI

(Hung and Samudrala 2003) led us to reconsider the use of

sequence information. Indeed, the inclusion of PSIPRED

(Jones 1999) into the CSI 2.0 algorithm improved the Q3-

accuracy from 87.3 % (chemical shift only) to 89.35 %.

This improvement is statistically significant (p \ 0.001).

More specifically, the inclusion of PSIPRED was found to

improve the ‘‘b-strand’’ accuracy by 4 % and the ‘‘coil’’

accuracy by 2.3 %. On the other hand, the identification

accuracy of a-helices was not improved in any substantial

way. Given that chemical shift-based methods tend to

confuse some b-strand residues with coil residues (and vice

versa), it appears that PSIPRED helps to remove this

chemical shift ambiguity.

CSI 2.0 accurately identifies secondary structure

with ‘‘trick’’ proteins

Proteins with high sequence identity but very different

folds pose special challenges for sequence-based structure

prediction methods (Shen et al. 2010). One example of note

is the protein G pair known as GA (95) and GB (95)

(Alexander et al. 2009). Protein GA (95) is a specially

designed, mostly helical protein that shares a high degree

of sequence identity (95 %) with the native, b-rich protein

G. Here, we investigated how CSI 2.0 performed in dis-

tinguishing the local structures of these two proteins when

compared to other methods [TALOS-N (Shen and Bax

2013) and PSIPRED (Jones 1999)]. As seen in Fig. 2, and

as expected, PSIPRED did quite well with its secondary

structure prediction for GB but not so well with GA. On the

Table 7 Confusion matrix of secondary structure assignments gen-

erated by CSI 2.0 on the independent test set of 59 proteins

Secondary structure H (pred) B (pred) C (pred) Total

H (obs) 2,043 0 143 2,186

B (obs) 0 2,019 316 2,335

C (obs) 281 153 3,123 3,557
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other hand, CSI 2.0 and TALOS-N performed comparably

well and were able to correctly identify the secondary

structures in both proteins. The fact that CSI 2.0 uses

PSIPRED in its determination of secondary structure, but

its performance was not compromised in this ‘‘GA versus

GB test’’ illustrates how CSI 2.0 is able to appropriately

balance experimental chemical shift information with

sequence/PSIPRED information.

We also investigated the performance of CSI 2.0 for

assigning the secondary structure for a completely unfol-

ded protein (i.e. unfolded ubiquitin in 8 M urea—BMRB

4375). As seen in Fig. 3, CSI 2.0 was able to accurately

identify the disordered structure of this protein, whereas

PSIPRED and TALOS-N proved to be somewhat less

accurate than CSI 2.0. In the case of TALOS-N, nine

‘‘coil’’ regions were incorrectly predicted as ‘‘b-strands’’.

In the case of PSIPRED most of the protein was predicted

to contain a high proportion of helices and b-strands.

Because PSIPRED predicts the secondary structure from

sequence, it just reported the folded ubiquitin structure

retrieved by a PSI-BLAST search. However, because CSI

2.0 weighs both the chemical shift information with PSI-

PRED predictions, its performance was not compromised.

Potential improvements

J-coupling constants and NOE data can obviously aid in

inferring the existence or delineation of secondary struc-

ture. This is why conventional NMR methods have tradi-

tionally depended so heavily on these NMR-derived

parameters to identify secondary structures. Potentially

some improvement in CSI 2.0’s performance could be

achieved if these parameters were also included in the

model, particularly in cases when chemical shift data is

missing or ambiguous. However, our focus has primarily

on developing a simple approach that requires only

sequence data and backbone chemical shift information to

accurately identify protein secondary structures. The

advantage of using chemical shifts is that these are the first

pieces of experimental data that one obtains when studying

proteins by NMR. Chemical shifts are also far easier to

measure and far more accurately measured than NOEs and

J-coupling data.

Instead of adding more experimental data, another

approach that could potentially improve the performance of

CSI 2.0 is to include sequence homology information from

previously solved protein structures. With more than

100,000 protein structures in the PDB, this represents a

significant and largely untapped information resource on

secondary structure. The use of sequence homology from

solved structures has been shown to substantially improve

the performance of sequence-only secondary structure

prediction methods (Montgomerie et al. 2006; Cole et al.

2008). However, it is not clear whether the same level of

improvement could be achieved when working with data

that already has some experimental information concerning

the secondary structure (i.e. chemical shifts).

The CSI 2.0 web server

A web server (http://csi.wishartlab.com) has been devel-

oped that accepts a BMRB (NMR-Star 2.1 or NMR-Star

3.1) or SHIFTY-formatted chemical shift file and generates

secondary structure assignments along with a colorful CSI

bar graph plot with secondary structure icons marked

above the bar graph. The server supports a number of user-

Fig. 2 Secondary structure

prediction/assignment for

BMRB 16116 (PDB ID: 2KDL)

and BMRB 16117 (PDB ID:

2KDM) by CSI 2.0, TALOS-N

and PSIPRED
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selectable options including the choice of running with or

without PSIPRED. The web server is implemented as

Python CGI-script. In general, the web server takes \60 s

(if PSIPRED is off) or[140 s (if PSIPRED is on). A screen

shot of the CSI 2.0 web server and its output is shown in

Fig. 4.

Conclusion

CSI 2.0 represents a substantial improvement over the

original CSI concept. In particular it uses an extended

feature set derived from chemical shift and sequence data.

It also replaces the simple digital filtering used in the

Fig. 3 Secondary structure

assignment/prediction for

BMRB 4375 (unfolded

ubiquitin) as determined by the

CSI 2.0, TALOS-N and

PSIPRED programs

Fig. 4 The CSI 2.0 (http://csi.wishartlab.com) web server showing screen shots of the home page and result pages
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original CSI algorithm with a more powerful ‘‘feature fil-

ter’’ that uses machine learning. Using the standard 3-state

criteria (a-helix, b-strand and coil) and standard evaluation

method such as Q3-accuracy, CSI 2.0 shows a significantly

improved performance over the original CSI (89 vs. 80 %)

as well as significantly improved performance over other

available state-of-the-art secondary structure identification

methods (89 vs. *86 %). This performance improvement

was statistically significant for the most common second-

ary structure assignment method, DSSP. Based on data

presented here concerning the level of agreement between

different secondary structure identification methods (NMR

vs. X-ray vs. different programs), we suspect that we are at

or near the maximum performance that secondary structure

assignment methods can achieve. In addition to the per-

formance improvement seen with CSI 2.0, we also showed

that CSI 2.0 successfully detected different secondary

structures in structurally dissimilar proteins sharing high

sequence identity—something that commonly fools other

programs. We also showed that CSI 2.0 is able to identify

the (lack of) secondary structure in unfolded proteins.

To make this method publicly accessible, a CSI 2.0 web-

server (http://csi.wishartlab.com) has been developed. It

accepts chemical shift assignments in a variety of formats and

generates colorful graphical output describing the identity and

location of all secondary structure elements. We believe that

CSI 2.0, with its superior performance will be a useful con-

tribution to the field of biomolecular NMR. It should be par-

ticularly useful in the initial stages of conventional NMR

structure generation (i.e. identifying homologous folds or

providing useful torsion and distance restraints) as well as

serving as a robust alternative to standard coordinate-based

methods for secondary structure identification. CSI 2.0 is

currently being used in the development of improved chemi-

cal shift-only 3D structure determination methods.
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